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CHAPTER 1

Introduction

In this chapter we have gathered some of the pertinent notation as well as
some required background material. For further information see [Jech, 1978],
[Jech, 1986] and [Kunen, 1980].

1.1 Logic and Combinatorics

1.1.A Set theory The set theory we will use is the Zermelo-Fraenkel,
ZFC. Quite often we will use models of “sufficiently large” fragments of ZFC.
We will reserve the collective name ZFC* for these fragments and we will never
investigate the precise definition of “sufficiently large.”

We will also use the standard set theoretic notation. In particular, X \' Y
denotes the difference between sets X, and Y and XaY = (Y \ X)U(X\Y).
Furthermore,

P(X)={Y:Y C X}.

By the term “model” we will mean a set together with the relation €. For
models N, M we say that N is an elementary submodel of M, N < M, if for
every formula ¢(z1,...,2,) and a1, ... ,a, € N, we have

N E o(a1,...,an) <= M Ep(a,...,a,).

We will define the cumulative hierarchy as follows: Vo = 0, Vo4 =
P(Va), and Vy = ,cx Ve for a limit ordinal A\. V = [J,coq Va is 2
standard model of ZFC, where Ord denotes the class of all ordinals. For
z € V let rank(z) = min{a : z € V,}.

Constructible universe L is the canonical inner model of ZFC, and as
above L = Uanrd L., where Ly consists of subsets of L, definable in L,
while Ly = {J, ) Lo for a limit ordinal A. Similarly, if X C Ord is a set we
define the model L[X]. The case when X C w will be most important for us.
We refer the reader to [Kunen, 1980] and [Jech, 1978] for the details.

One of the models of ZFC* that we will use quite often is H(x), the col-
lection of sets that are hereditarily of size < k. We will work with H(X) or
H(R,) or with H(x), where x is a “sufficiently large” regular cardinal.

The quantifiers Y and 3*° will denote “for all but finitely many” and
“for infinitely many,” respectively.
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1.1.B Sets and functions For a set X let | X| denote the cardinality of
X. For sets X,Y let X x Y denote the cartesian product of X and Y. If
ACX XY, let

(A)e ={y€Y :(z,y) € A} for z € X, and

(A ={zeX:(z,yyc Al foryec?.

fis a function, if f C dom(f) x range(f), where dom(f) and range(f) denote
the domain and range of f, respectively, and |(f)s| = 1. We will always use
the conventional f(z) instead of (f)c-

For X C dom(f) and Y C range(f), let

Ff(X)={f(z) :z € X}

and
FAY)={z: f(z) €Y}

denote the image of X and the preimage of Y, respectively. In those few cases
where the image of X gets confused with the value of f at X, we will be more
explicit.

If Z C dom(f) , then f|Z denotes the restriction of f to Z. For functions
f, 9 let fog denote the composition of f and g.

When X is a set and « is a cardinal, let X* denote the set of all sequences
of elements of X of length &, and let [X]* denote the set of all subsets of X
of size #. Similarly let X<* = |J, ., X¢ and [X]<* = {J, ., [X]*.

In particular, the sets X<* and [X]<“ are the sets of finite sequences of
elements of X and finite subsets of X, respectively. If s is a sequence, then
|| is the length of s. For s,t € X< let s™t to be the concatenation of s and
t,and [s]={f € X¥:s5C f}.

The following theorem is known as the A-lemma.

THEOREM 1.1.1 ([KUNEN, 1980])

Suppose that A is an uncountable family of finite sets. Then there exists an
uncountable subfamily A' C A and a set Ag such that for all A)/B € A,
ANB=A4, 0O

For a cardinal number &, let k* denote the cardinal successor of k. Let
GCH denote the statement “Vx 2 = k*,” and let CH denote the statement
«2No — Nl”-

1.1.C Stationary sets Suppose that x is an infinite ordinal and X C &.

1. X is closed if for every a < &, sup(X Na) € X.

2. X is unbounded if X \ a # 0 for all o < .
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LEMMA 1.1.2 ([JECH, 1978]) Suppose that k is a regular uncountable cardi-
nal and {Xq 1 @ < X < k} are closed unbounded sets. Then X =,y Xo is
a closed unbounded set. 0O

In other words, closed unbounded sets generate a k-complete filter on .
Suppose that (X, : a < ) is a sequence of subsets of k. We define the
diagonal intersection of the X,’s as:

Aa(nXa:{6<K:6€ﬂXa}.

a<lé

LEMMA 1.1.3 ([JECH, 1978]) The diagonal intersection of a k-sequence of
closed unbounded subsets of k is closed and unbounded. O

A set X C & is stationary if X N C # { for every closed unbounded set
C Ck.

Suppose that S C k. A function f : S — Ord is called regressive if
f(e) <aforalla € X\ {0}.

THEOREM 1.1.4 (FoDpoR, [JECH, 1978])
If f is a regressive function on a stationary set X C k, then there exists a
stationary set Y C X and 6 < k such that f(a) =6 foralla €Y. O

THEOREM 1.1.5 ([JECH, 1978])

Suppose that k is a regular cardinal and X C k is a stationary set. Then
there exists a partition {X : o < k} of X such that X, Is stationary for all
a<k. O

1.1.D Trees A partial ordering (T, <) is called a tree if for every t € T
the set {s € T : s < t} is well-ordered.

The a-th level of T', which we denote by Ty, is the set of all ¢ € T such that
the order type of {s € T': s < t} is . Foratree T and ¢t € T let succy(t) be the
set of all immediate successors of ¢t in T, and let T; = {s €T :s<tort< s}
be the subtree determined by ¢. A branch through T' is any maximal linearly
ordered subset of T'. The set of all branches of T is denoted by [T]. An
antichain is any set of pairwise incompatible elements of 7.

Let split(T") = {t € T': |succp(t)| > 1} and let stem(T") be the first element
of split(T"). A tree T is called perfect if for every s € T there exists ¢ € split(T")
such that s < t.

The most common examples of trees in this text are those trees on w that
are subtrees of (w<*,C). We will identify an infinite branch  in w<* with
the function (Jb € w®.
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DEFINITION 1.1.6
Suppose that x is an infinite cardinal and T is a tree of size k. We say that

1. T is a k-Aronszajn tree if all levels of T' have size < k, and T has no
branches of size k, and

2. T is a k-Suslin tree if all antichains and branches of T' have size < k.
When k = 81 we will call these trees Aronszajn and Suslin trees, respectively.

We have the following classical result:

THEOREM 1.1.7 (KONIG)
If T is an infinite tree such that succy(t) is finite for allt € T', then T' has an
infinite branch. In particular, there are no Ro-Aronszajn trees. [

In 3.3.6 on page 140, we will show that an Aronszajn tree can be con-
structed in ZFC. On the other hand, a Suslin tree cannot be constructed in
ZFC, but it can be built in the theory ZFC + V = L (see [Jech, 1978]).

A tree T is called special if T' = |, cw A,, where each A, is an antichain
inT.

TuEOREM 1.1.8 ([JECH, 1978])
MAy, implies that every Aronszajn tree is special. In particular, MAxy,
implies that there are no Suslin trees. [

1.1.E Large cardinals We will use several definitions associated with
large cardinals.

DEFINITION 1.1.9
Suppose that k is a regular uncountable cardinal.

1. k is inaccessible if 2* < k for all A < k.
2. k is Mahlo if {)\ < k : ) Is inaccessible} is stationary.
3. k is weakly compact if there are no k-Aronszajn trees.

We will often use the following classical lemma:

LEMMA 1.1.10 ([JECH, 1978]) The following conditions are equivalent:
1. R < R for alla € R, and

2. Ny is an inaccessible cardinal in L[a] for alla € R. O

We will use the following characterization of weakly compact cardinals.
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DEFINITION 1.1.11
A cardinal k is II}-indescribable if for every TI} sentence ¢ and every set
U Ck,

Ve, e, U)Ep <= A<k (Va,e,UNA) Eep.

TueoreM 1.1.12 ([JEcH, 1978))
A cardinal k is weakly compact if, and only if, it is II}-indescribable. O

1.2 Topology and Measure

The subject of this book is sets of real numbers but for technical reasons
we will often work in other topological spaces. Below we define several spaces
whose elements we will identify with “reals.” These spaces are the real line R,
the unit interval [0, 1], the Cantor set 2%, the Baire space w*, and the space

X; = [lnco f(n), where f € w®.

Recall that X is a Polish space if X is homeomorphic to a complete met-
ric space with no isolated points. Most of the results in this book can be
formulated and proved for Polish spaces equipped with a measure.

Let (X, d) be a Polish space with a metric d. For a set A C X let

c(A)={yeX :¥e> 03z € Ad(z,y) < ¢}

be the closure of A4 in X.

1.2.A Borel sets Let X be a Polish space. A family A C P(X) is called
a o-algebra if

1. 0, X € A,
2. if A€ A, then X \ A € 4, and
3. if {An :n €w} C A, then |J, ¢, An € A.

Let BOREL(X) be the smallest o-algebra containing all open subsets of
X.

It is useful to give a more explicit definition. Let X9 be the collection of
all open subsets of X and II} be the collection of all closed subsets of X.

For a > 1, let

Egz{UAn:Vn3ﬁ<aAneHg} and II = {X\A: Ae=%}.

new

Traditionally B9 sets are called F, sets and I sets are called G5 sets.
Using the axiom of choice we easily show that
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BOREL(X) = [ ] =0 = (J m..
alwy a<lwy

We say that A C X is nowhere dense if (X \ cl(4)) = X. In other words,
A 1s nowhere dense if its closure does not contain an open set.

A set F C X is meager if F = UnEw F, where each set F,, is nowhere
dense. Meager sets are also called first category sets.

A set A C X has the Baire property if there exists a Borel set B such
that the symmetric difference AAB is meager. The collection of all subsets
of X having the Baire property will be denoted by BAIRE(X). We have the
following classical result:

THEOREM 1.2.1 (BAIRE)
Let X be a Polish space. Then X is not meager. 0O

From the above definitions it follows that every nowhere dense set can
be covered by a closed nowhere dense set and that every meager set can be
covered by a meager set of type F,. We will always deal with the set in
this form. In particular, meager will always mean “meager of type F,,” and
nowhere dense will mean “closed nowhere dense.” Moreover, we have the
following:

THEOREM 1.2.2 ([JECH, 1978])
Suppose that A has the Baire property. Then there exists an open set U such
that AAU is meager. O

The convenience of working in the Baire space or the Cantor set instead of
an arbitrary Polish space stems from the fact that many topological notions in
those spaces have combinatorial counterparts. In particular, {[s] : s € w<*}
is a basis in the Baire space and {[s] : s € 2<“} is a basis in 2“.

Suppose that C C 2 is a set. Let T = {z[n:n €w, z € C}. Clearly, T
is a subtree of 2<%, and we easily see that c/(C') = [T]. In particular, closed
subsets of 2“ correspond to trees in 2<%.

In w* we can show even more:

LEMMA 1.2.3 Let K C w¥ be a closed set. The following conditions are
equivalent.

1. K s compact,

2. K =[T], where T is a tree such that succr(t) is finite for everyt € T,
and

3. there exists f € w* such that K C {z € w* : Vn z(n) < f(n)}.
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PROOF. (1) — (2) Suppose that K = [T]. If for some n € w, T, is
infinite, then {[s] : s € T,,} is an open cover of K with no finite subcovering
and contradicts (1).

The remaining implications are obvious. O

A set A C 2% is called clopen if A is both closed and open. Note that 2¢,
and in general any compact metric space, has only countably many clopen
subsets.

A closed set A C 2 is called perfect if A = [T, where T is a perfect tree.

We have the following classical result:

THEOREM 1.2.4 (CANTOR-BENDIXON, [KECHRIS, 1995])
Let A C 2% be a closed set. Then A = P U X, where P is perfect and X is
countable. 0O

1.2.B  Group structure For z,y € [0,1], by z + y we mean z + y, if
z+y<1and z+y— 1 otherwise. Similarly for z,y € 2%, (z + y) is defined
as (z + y)(n) = 2(n) + y(n) mod 2. Similarly, for h,g € X}, (h+g)(n) =
h(n) + g(n) mod f(n).

The operation of addition defined above gives the underlying space a struc-
ture of the topological group.

Suppose that X is a Polish space. Throughout this book we will refer to a
function p : BOREL(X) — [0, 1] as measure if it has the following properties:

L u(0) =0, u(X) = 1,

2. if {An : n € w} C BOREL(X) is a sequence of pairwise disjoint sets then
M (UnEw A") = ZnEw /I'(A")’

3. p is nonatomic, that is, for every set A € BOREL(X), such that pu(A) >
0, there exists B C A such that 0 < p(B) < u(4),

4. for A € BOREL(X) and t € X, p(t + A) = u(A) (if X is a topological
group), and

5. for every A € BOREL(X) and £ > 0, there exists a compact set K and
an open set U such that K C AC U and p(U \ K) < e.

Note that, when p is a measure, it can be extended to a o-algebra
MEASURABLE(X) = {A : 3B € BOREL(X) pu(AAB) = 0}.

We will call the elements of MEASURABLE(X), measurable sets.
We will use the concept of outer and inner measure. For any set A C X,
define the outer measure of A as

p(A) =inf{u(U): ACU & U is open}



