By Faltings G., Chai C.

A brand new and whole therapy of semi-abelian degenerations of abelian forms, and their software to the development of mathematics compactifications of Siegel moduli house, with many of the effects being released for the 1st time. Highlights of the ebook contain a type of semi-abelian schemes, development of the toroidal and the minimum compactification over the integers, heights for abelian forms over quantity fields, and Eichler integrals in different variables, including a brand new method of Siegel modular varieties. A necessary resource of reference for researchers and graduate scholars drawn to algebraic geometry, Shimura forms or diophantine geometry.

Show description

Read Online or Download Degeneration of abelian varieties PDF

Best algebra books

Structure and Representation of Jordan Algebras

###############################################################################################################################################################################################################################################################

Extra info for Degeneration of abelian varieties

Sample text

C < b 1- 1)ie 3agl n geiBt bae groBie in bem mrudj en t ~ aIt en e ® an 3e, c lJeiBi ber ffi eft. W1an nennt audj bie 3a~I a ben 1) i" tJihenbue ober 3a~ler, b ben 1)itJifor ober menner, n ben Duo ti en te n, c ben ~ i tJ if ion are f1. flO 2. ~enn Rii~ler unb menner cines ~rud)ee einen gemeinfd)aftlid)en ~aftor ~aben, fo ift IlUd) ber meft burd) hieien ~Ilftor t~eHbar. @e fei a = nb + c, c < a = rna, b = m~ f0 ergiebt fid) mIX = nm~ b +c ober c = rna - nm~ = m (a - n~) h. ~. ber ffieft c befi~t henfelben ~Ilftor m, lueld)er bem 3ii~ler a unb bem menner b gemeinfd)llftlid) tuar.

Ml n') ml n a a a + nl) = = a- (ml + (I. a a ffiid)Ugteit bee 1. pofitiu ober negatil1 finb. l1 = n negattl1 = a) ift hie SJ)oten3 am - n = a- (n-m) = 1 - nl - ml - mI - nl Il-m a 1 am 1- an }DJ an[ 55 Sm ~ aU e 1lI-0 _ • -a Sm b) ift ~ie \},)otena m+o ' _ m n' - •. a = •. -n·=7 1 1 ~--~~ ~~--- a(Ill ' + n) - a(Ill' an am 1 - -rrT a ~ a Ue 1 \},)otena ~ie 1 Sm m ---=-- n an an a d) ift Me \},)oten3 m- n (n'-m ' ) , tuenn 0 ' > m' o~et = a- l m - n , tuenn m' > n' Sft n' > m', fo tuit~ a = a . a 0' am -0' a =-an ) tuit~ m-n -(m'-n') a =a = 1 -ffi/ - a -1a III n' - -m ' a - 0' a ~et \},)oten3fa~ II.

UmgefeI)rt i ft ei n SJ) rob u ft tJ 0 n IB r ii ef) eng lei ef) ei n em IBruef), beffeu 3iiI)ler gleief) bem SJ)robuft ber gegcocncn 3iiI){cr ultb beffen ~cnner gleief) bem SJ)robuft ber gege" o en en ~ en n er i ft. IBellJeia: Um Me ffiief)tigfeit ber @feief)ung a aIX b~==I)'ff au priifen, muftipficire man aUf oeiben ~eitcn mit ergieot fief) mit ml1llJenbung ber &rWirung cinea unb nadj 3IX b~' (b~) b. £). 3 IX == ~. ~ == 3 I)' b . b~. IX mnmedung: Sft ein %aftor bea 3iiI){era gleief) cinem %aftor bea O.

Download PDF sample

Rated 4.62 of 5 – based on 41 votes